W Boson Mass Measurement at the Tevatron

Chris Hays Duke University

For the CDF and DØ Collaborations

XLth Rencontres de Moriond -- March 16, 2005

W Mass in the Standard Model

SM predicts m_w in terms of Z, t masses and electroweak couplings

"On-shell" scheme:

 $m_W^2 = \frac{\pi \alpha_{EM}}{\sqrt{2}G_F (1-m_W^2/m_Z^2)(1-\Delta r)}$

Measured to 0.0009% with

muon lifetime

.0009% with Measured to 0.004% at LEP

$$\Delta m_W^2 \propto m_t^2$$

 $\delta m_t = 4.3 \text{ GeV} \longrightarrow \text{Need}$ $\delta m_w = 30 \text{ MeV} (0.037\%)$

$$\Delta m_W^{\sim} - ln(m_H^{\prime}) - ln^2(m_H^{\prime})$$

C. Hays, Duke University

Measured to 0.014% at

$$Q^2 = m_Z^2$$

Radiative corrections dominated by top, Higgs (0.67% correction)

W Mass at the Tevatron

Run 1: 59 MeV combined uncertainty (79 CDF, 84 DØ), $L\sim120~pb^{-1}$

Run 2: L~600 pb⁻¹ recorded per experiment

CDF: Analyzed first 200 pb $^{-1}$, determined uncertainties in e and μ channels

 $\mathcal{D}\mathcal{O}$:

Finishing precision calorimeter calibration, finalizing data sample selection

W Mass at the Tevatron

Mass information comes primarily from lepton p_{σ}

> Run 2 goal: calibrate $p_{_T}$ to $\sim 0.01\%$

Additional information from V p_T (inferred through measurement of hadronic recoil energy)

Use Z decays to model boson p_T distribution, detector response to hadronic recoil energy Combine lepton and neutrino p_T to form transverse mass (m_T) for best statistical power $m_T^2 = 2p_T^{\ \ell}p_T^{\ \nu}(1-\cos\Delta\phi)$ C. Hays, Duke University

W Mass at CDF

Similar calorimeter and tracker resolutions for e and μ from W/Z decays

Combine electron and muon channels to increase statistical power

Strategy:

- Use muons from decays of low-mass resonances to calibrate tracker
 - > Linear momentum response allows extrapolation to high masses
- Use electrons from W decays to calibrate calorimeter with track
- Model hadronic response using $Z \rightarrow ll$ events

sing $Z \rightarrow ll$ events C. Hays, Duke University

CDF Event Generation and Simulation

Precision of few parts in 10⁴ requires detailed model of measured line shapes

QCD corrections to W/Z production:

$$\delta m_{_{\mathcal{W}}} = \pm 13 \, MeV$$

Model boson $p_{_T}$ using event generator (RESBOS) with leading log calculation, non-perturbative parameters constrained with Run 1 Z $p_{_T}$ data

QED corrections to W/Z decay:

Radiate final-state photons according to energy and spatial distributions from NLO event generator (WGRAD)

$$\delta m_{_{\mathcal{W}}} = \pm 15-20 \, MeV$$

Detector simulation and reconstruction:

- Fast hit-level tracker simulation
- Model bremstrahlung, ionization energy loss, γ conversion

CDF RUN II
PRELIMINARY

CDF Tracker Alignment

Correct for chamber nonuniformities when fitting tracks

CDF Muon Momentum Calibration

Set momentum scale using J/ψ and upsilon decays to muons

momentum determined to 3 parts in 10000:

$$\delta m_{\rm w} = \pm 25 \, MeV$$

 J/ψ mass independent of muon momentum

Upsilon mass constrains tracker non-linearity and beam constraining bias

CDF Electron Energy Calibration

Use calibrated tracks to set calorimeter electromagnetic energy scale

E/p peak in $W \rightarrow eV$ events determines energy scale High statistics, similar energy distribution to measurement sample

* Significant amount of passive material (silicon) in CDF detector $\delta m_w = \pm 55 \, MeV$

Tune upstream passive material model using tail of E/p distribution C Hays Du

$$\delta m_{W} = \pm 35 \, MeV$$

Measure calorimeter non-linearity using E/p distribution in bins of E_{τ}

Hadronic Recoil Measurement

Measure hadronic recoil (u) by summing over all calorimeter towers •

* Remove towers with energy deposited by lepton

 $0.1 \times 0.25 \, \eta$

Estimate removed recoil energy using towers separated in ϕ

Removed muon towers

$$\delta m_{W} = \pm 10 \, MeV$$

Hadronic Recoil Measurement Model

* Parametrize hadronic response: $\mathcal{R} = u_{meas}/u_{true}$

* Resolution model combines terms from underlying event and jet resolution u_{true} given by $p_{T}(Z)$ $\delta m_{qu} = \pm 20 \, MeV$

Underlying event:

- * independent of recoil
- * resolution model tuned on minimum bias events

Jet resolution:

- * accounts for resolution $p_{\sigma}(Z)$ -dependence
- * resolution ~ $[p_T(Z)]^{1/2}$

 $\delta m_{qu} = \pm 20 \, MeV$

Tune parameters using $Z \rightarrow \mu \mu \text{ events}$

Backgrounds

Muons

Use data to estimate decays-in-flight $\rightarrow \mu$, hadronic jets $\rightarrow \mu$, and cosmic ray muons

- * Cosmic ray background:
 - determined using track hit timing information
- * Kaon background:
 - decay in COT leads to track mismeasurement— E_ opposite to track
 - use $\Delta \phi(l, \mathcal{E}_{\mathcal{T}})$ distribution to estimate background

Background	%
Hadronic Jets	0.9 ± 0.5
Kaons	1.0 ± 1.0
Cosmic Rays	0.3 ± 0.1
Z → μμ	4.4 ± 0.2
$W \longrightarrow \tau v$	1.9 ± 0.1

* Hadronic jet background:

- obtain QCD $\mathcal{E}_{_{T}}$ distribution using events with significant energy surrounding muon
- fit data $\mathcal{E}_{_{T}}$ distribution to obtain background normalization

$$\delta m_{_{\mathcal{W}}} = \pm 20 \, MeV$$

C. Hays, Duke University

W Mass Fits and Systematics

Good χ^2 for fits

Fits blinded with additive offset

Systematic	Electrons (Run 16)	Muons (Run 16)
Lepton Energy Scale and Resolution	70 (80)	30 (87)
Recoil Scale and Resolution	50 (37)	50 (35)
Backgrounds	20 (5)	20 (25)
Production and Decay Model	30 (30)	30 (30)
Statistics	45 (65)	50 (100)
Total	105 (110)	85 (140)

Summary and Outlook

Tevatron data pointing us toward the Higgs W mass measurement key component

Run 2 analyses in advanced stages

- 200 pb⁻¹ analyzed at CDF and uncertainties determined
 - > Total uncertainty (76 MeV) already lower than Run 1 (79 MeV)
 - > Full analysis cross-check in progress with GEANT tracker simulation
- \bullet $\mathcal{D}\emptyset$ finalizing calorimeter calibrations

Run 2 will integrate 4 - 8 fb⁻¹

- Expect to provide significant reduction in uncertainty
 - > 40 MeV per experiment in Run 2 (current single most precise experiment: ALEPH, 58 MeV)